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Abstract 
A landslide is the downslope and outward movement of earth-forming materials. The study area 
is Kundiawa Gembogl district, which is one of the six districts of Simbu Province in the 
highlands region of Papua New Guinea. More often, there are landslides on the roads that affect 
the traffic for both locals and the tourists who visit Mt. Wilhelm every year and affect the local 
revenue. This research aims to identify the landslide-prone areas and produce a landslide 
susceptibility map of the district of Kundiawa Gembogl, and a risk assessment of the properties. 
A wide variety of parameters or physical factors can affect the earth’s stability and cause 
landslides. In this research, six (6) physical factors were used to generate a landslide 
susceptibility map. They are rainfall, slope, lithology, soil types, distance from the road, and 
distance from the river, which were generated either from the Digital Elevation Model (DEM) or 
through spatial analysis using Papua New Guinea’s (PNG) national database respectively. The 
Weighted Linear Combination (WLC), an analytical method that deals with multi-attribute 
decision-making (MADM) was used to generate the landslide susceptibility map. The resulting 
susceptibility map was validated by using fifteen (15) past-recorded landslides in the area and 
most of them were found to be in the moderate and high-risk zones. 
Keywords: Landslide, Susceptibility, Weighted Linear Combination, Highlands, Papua New 
Guinea, Geographical information System 
 
1. Introduction 
Landslide refers to the movement of ground or slope materials in a downward and outward 
direction at a vertical angle (Tandon et al., 2022). The assessment of landslide vulnerability 
involves the identification of areas that are susceptible to landslides by examining factors or 
parameters that can trigger such hazards or disasters (Glade, 2003). Landslides are considered to 
be one of the most perilous, devastating, and expensive natural or human-induced hazards that 
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can occur anywhere on Earth (Svalova, et al., 2019). Conducting landslide risk assessments is of 
utmost importance as it aids in disaster prevention and facilitates the planning of infrastructure 
development. However, the assessment of this hazard/disaster is still lacking in some parts of the 
world (Dai et al., 2002). Without proper assessment of the surrounding environment and no 
proper planning of the area may put human lives and properties at risk.   
The natural landscape is mountainous with rugged terrains, and slope hillsides with lots of creeks 
and rivers running downhill. Due to the geographical condition of the landscape, there are higher 
risks of having landslides anywhere (Svalova, et al., 2019). More often, there are landslides 
along the road in the rugged terrain area, which affects the traffic, causing adverse effects on the 
local revenue, infrastructure, and properties of those who are living there (Dai and Lee, 2002). It 
is not uncommon for disasters to result in casualties, particularly in areas where there is a high 
concentration of people living and farming on mountainous terrain that is susceptible to 
landslides. To effectively plan for and mitigate the impact of such disasters, it is crucial to 
conduct landslide susceptibility mapping and zonation of the affected area. This will help 
identify areas that are most at risk and enable disaster preparedness planning and mitigation 
efforts to be targeted accordingly. 
In the recent past, a wide range of models, algorithms, and techniques have been used for GIS-
based landslide susceptibility mapping (Lee, 2019). These models are divided into basic two 
categories, data-driven and knowledge-driven. Probabilistic, statistical, and machine-learning 
models are classified under data-driven models (Bordoni et al., 2021; Zêzere et al., 2017). On the 
other hand, the analytic hierarchy process (AHP) and weight overlay are widely considered 
under knowledge-driven models (Kaur et al., 2023; Ma et al., 2019). The most frequently used 
models to analyze landslide susceptibility and their trends are regression models (Kadavi et al., 
2019; Zhu et al., 2018), frequency ratio models (Son et al., 2016; Li et al., 2017), artificial neural 
networks (Ermini et al., 2005; Lee et al, 2006; Tsangaratos and Benardos, 2014), fuzzy logic 
(Pradhan, 2010; Pourghasemi et al., 2012; Sur et al., 2020; Mallick et al., 2018), support vector 
machine (Huang and Shao, 2018; Yao et al., 2018), AHP (Pourghasemi et al., 2012; Samanta and 
Bhunia, 2023), and weight of evidence (Vakhshoori and Zare, 2016; Lee and Choi, 2004). The 
Weighted Linear Combination (WLC) (Michael and Samanta, 2016) method was used to 
evaluate the parameters for landslide susceptibility zonation of the district. The weightage of the 
physical factors was generated through the Analytical Hierarchy Process (AHP). AHP arranges 
the elements into a hierarchy using subjective judgments in order to assign numerical values 
based on the relative importance of these elements to the overall goals (Saaty, 1980). 
The aim of this research was to identification of the landslide-prone areas and the impact 
assessment on the local and surrounding infrastructure resources. The study was conducted with 
three objectives. They are, (i) to identify the parameters, that have a major influence on landslide 
occurrence, (ii) to identify of landslide susceptibility zone using a multi-criteria approach, and 
finally (iii) to validate the acceptability of the model by overlaying the historical landslides data 
on the resulted landslide susceptibility zone. The final output, a landslide vulnerability 
assessment map will guide respective authorities in disaster mitigation, future district 
development plans, and helps educate the villagers or public about the hazard/disaster zones. 
These maps can be used as reference documents for planning land use, and infrastructure such as 
selecting the most suitable site for buildings and road construction. Lives and properties will 
remain at risk without such studies and proper dissemination of information to the local 
authorities and local residents. 
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2. Methodology 
2.1 Study area 
The Simbu Province is situated within the highlands geomorphological region. Kundiawa 
Gembogl district in Simbu (Chimbu) province in the highland region of Papua New Guinea was 
selected to conduct this research. The district is located in the highland mountain range with 
steep slopes and rugged terrains with a total land area of 440.4 square kilometers. Total 
populations of 78,521 are living in this area as per the latest PNG National census data released 
in 2011. Figure 1 represents the locality map of the study area along with basic infrastructures. 
 

 
Fig. 1 The location map of the study area; (a) Papua New Guinea, (b) Simbu province 

and (c) Kundiawa Gembogl district 
 
2.2 Parameters 
In this research, six physical parameters were used for the analysis of the landslide susceptibility 
mapping. They are (i) rainfall, (ii) slope, (iii) soil type, (iv) lithology, (v) distance from the road, 
and (vi) distance from the river. Rainfall that has a high intensity will influence landslides (Hong 
et al., 2005). The very high amount of rainfall in tropical and sub-tropical regions may trigger 
landslides (Kanungo et al., 2009). Intense and/or prolonged rainfall can cause the soil to be 
unstable and prone to landslides.  The slope should be examined in detail, for a steep slope of 
bare rock can be more stable compared to a slope made of a mixture of rocks and ground 
(Nathan, 2008). Multiple researches have shown evidence that very high susceptibility zones are 
more common along river valleys on steep side slopes (Nanehkaran et al., 2023). Therefore, the 
steeper the slope the more vulnerable the area is to landslide. 
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Lithology is one of the key factors in landslide susceptibility assessment. The geologic basement 
has effects on the formation of soil with different cohesion, permeability, texture, and strength 
and with distinct geotechnical behavior (Segoni et al. 2020). Lithology will show the area that is 
covered by various rock types or lithological units. It is a frequently used factor in landslide 
susceptibility analysis (El Jazouli et al., 2022).  Soil Type characterizes the mechanical 
properties of the soil and is particularly important for studying shallow landslides (Bachri et al., 
2020). Soil types are one of the key factors for determining the steadiness of slopes. Landslide 
probability is high over a specific soil type, with a mixture of gravels as a major component. In 
addition, there was no landslide occurred on the silty soil (Liu et al., 2021). All the soil texture 
classes were reclassified into hydrological soil groups (HSG) based on the infiltration 
characteristics.  
The proximity to a river is an additional factor that can contribute to the occurrence of landslides. 
As the distance to the river decreases, the likelihood of a landslide increases. This is because the 
river can erode the slopes, saturate the lower part of the land, and raise the water level, all of 
which can negatively impact the stability of the slope (Cellek, 2019). Similarly, the distance to a 
road is also a significant factor that influences the frequency of landslides (El Jazouli et al., 
2019). Landslides associated with roads may occur more frequently compared to those caused by 
the removal of vegetation (Hosseini, 2011). 
 
2.3Weighted Linear Combination (WLC) 
A weighted linear combination (WLC) is an analytical method that can be used when dealing 
with multi-attribute decision-making (MADM) or when more than one attribute must be taken 
into consideration. The WLC has three paces, namely (i) deriving and generating parameters 
from data sets, (ii) Ranking, classifying, and weighting of parameters, and (iii) generation of 
landslide hazard and risk factor map.  
All the parameters such as slope, soil, rainfall, lithology, distance from the road, and distance 
from the river were prepared from the different primary or other GIS databases. The slope of the 
area was calculated from DEM using the slope tools in the Arc Toolbox of ArcMap 10.5. All the 
parameters were reclassified using the “Reclassify tool” under the Spatial Analysis Tools of 
ArcMap 10.5. The reclassified values are the rank values, which range from one (1) to five (5). 
The lower rank refers to very little or no influence and the higher rank refers to very high 
influence in the cause of the landslide probability (Saaty, 1980). In addition, all the parameters 
were assigned weights based on the importance of their influence on landslide occurrences. The 
weighted overlay analysis tool in the ArcMap Toolbox was used to produce the landslide 
susceptibility map. The weightage of each parameter was estimated through the Analytical 
Hierarchy Process (AHP). The Analytic Hierarchy Process (AHP) is a theory of measurement 
through Pairwise comparisons and relies on the judgments of experts to derive priority scales 
(Saaty, 2008). A consistency analysis was through consistency ratio (CR) calculations to check 
whether the weights were accepted or not and it was recommended that CR should be definitely 
below 0.2 (Saaty, 1977). 
The validation of the risk factor map was done after the risk map production. The past landslide 
points were overlaid on the landslide susceptibility map to see whether the landslide points fell in 
the high susceptibility zones or low susceptibility zones. In the general view, if most of the 
historical landslides come under moderate to very high susceptibility zones, then the model can 
be accepted to be used. The methodological flow chart is presented in the figure 2. 
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Fig. 2 The methodological framework for landslide susceptibility analysis  

 
3. Result and discussions 
A variety of factors and the preparation of consequent thematic data layers are vital components 
of any model for landslide susceptibility mapping. The features leading to instability in terrain 
are mainly rainfall, soil type, lithology, slope, and distance from the road and river. However, the 
importance of an exacting parameter depends on site-specific conditions. The Pairwise 
comparison in the analytical hierarchy process was used to calculate the criteria weight. The 
consistency ratio (CR) value was calculated as 0.089 (8.9%), which is a best-fit consistency with 
the use of six (6) parameters (Figure 3). Table 1 represents all the parameters used for landslide 
susceptibility mapping with weight and all the sub-classes with their favorable rank. 
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Fig. 3 The Pairwise comparison in analytical hierarchy process to calculate the criteria weight; 
(a) Priorities and (b) Decision matrix

The mean annual rainfall of the study area ranged from 2400 
area was classified into five different rainfall intensity zones. They are (i) 2400 
2900 – 3400mm, (iii) 3400 – 
Maximum rain is dominated in the northern side of the study area. There are five (5) cate
of rock were found in the study area, namely (i) volcanic rock, (ii) sandstone and siltstone, (iii) 
sedimentary deposits, (iv) Scree deposits, and (v) limestone (Figure 4b). Limestone rocks were 
found in the middle of the study area, covered by 12.2
at higher risk for landslide occurrence. However, some small pockets of sedimentary deposits 
were observed in the north part of the district, covering only 1.66%. Furthermore, the volcanic 
and igneous rocks (71.58%) were found in the north, northeast, and southwest parts of the study 
area, marked to be at lower risk for landslide occurrences. The scree deposits were observed in 
some pockets of the district, wrapped by 3% of the study area. The remaining part (23.77
the study area is enveloped by sandstone and siltstone, allocated in the central and some small 
pockets in the southern part. Nine (9) types of soil texture were found in the study area, namely 
Sandy loam, Loamy, Sandy clay loam, Silty clay, Clay, Sa
Peat. These soil texture classes were reclassified into four (4) hydrological soil groups (HSG). 
They are (i) HSG-A (Sandy loam), (ii) HSG
(Silty clay, Clay, Sandy clay, silty clay loam, Silt, and Peat). The study area is dominated by soil 
group D, which covers almost 74.19% of the study area (Figure 4c). The slope map was prepared 
from the DEM of the study area and divided into five slope categories (Figure 4d). They are (
Less than 10º, (ii) 10 - 20º, (iii) 20 
multiple-ring buffer areas were created on the path of the road to determine the road's effect on 
the slope's stability. They are (i) Less than 250m, (ii)
2000m, and (v) more than 2000m (Figure 4e). Similarly, five different multiple
were created on the path of the river to determine the effect of the river on the stability of the 
slope as well as the landslide occurrences. They are (i) Less than 250m, (ii) 250
750m, (iv) 750 - 1000m, and (v) more than 1000m (Figure 4f).

Melanesian Journal of Geomatics and Property Studies 
Department of Surveying and Land Studies, ISSN: 2414-2557 

       Mond, M.K., Samanta, S. | MJGPS | Joint Volume 8 & 9, 2023

comparison in analytical hierarchy process to calculate the criteria weight; 
(a) Priorities and (b) Decision matrix 

The mean annual rainfall of the study area ranged from 2400 - 4700mm (Figure 4a). The study 
ssified into five different rainfall intensity zones. They are (i) 2400 

 3900mm, (iv) 3900 – 4300mm, and (vi) 4300 
Maximum rain is dominated in the northern side of the study area. There are five (5) cate
of rock were found in the study area, namely (i) volcanic rock, (ii) sandstone and siltstone, (iii) 
sedimentary deposits, (iv) Scree deposits, and (v) limestone (Figure 4b). Limestone rocks were 
found in the middle of the study area, covered by 12.26% of the study area, and considered to be 
at higher risk for landslide occurrence. However, some small pockets of sedimentary deposits 
were observed in the north part of the district, covering only 1.66%. Furthermore, the volcanic 

%) were found in the north, northeast, and southwest parts of the study 
area, marked to be at lower risk for landslide occurrences. The scree deposits were observed in 
some pockets of the district, wrapped by 3% of the study area. The remaining part (23.77
the study area is enveloped by sandstone and siltstone, allocated in the central and some small 
pockets in the southern part. Nine (9) types of soil texture were found in the study area, namely 
Sandy loam, Loamy, Sandy clay loam, Silty clay, Clay, Sandy clay, silty clay loam, Silt, and 
Peat. These soil texture classes were reclassified into four (4) hydrological soil groups (HSG). 

A (Sandy loam), (ii) HSG-B (Loamy), (iii) HSG-C (Sandy clay loam), HSG
ilty clay loam, Silt, and Peat). The study area is dominated by soil 

group D, which covers almost 74.19% of the study area (Figure 4c). The slope map was prepared 
from the DEM of the study area and divided into five slope categories (Figure 4d). They are (

20º, (iii) 20 - 30º, (iv) 30 - 40º, and (v) more than 40º. Five different 
ring buffer areas were created on the path of the road to determine the road's effect on 

the slope's stability. They are (i) Less than 250m, (ii) 250-500m, (iii) 500-1000m, (iv) 1000
2000m, and (v) more than 2000m (Figure 4e). Similarly, five different multiple-
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Fig. 3 Parameters used for the landslide susceptibility analysis, (a) rainfall, (b) lithology/rocks 
type, (c) hydrological soil group, (d) slope, (e) distance from road, and (f) distance from river. 
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Table 1. Parameters used for landslide susceptibility mapping with weight and rank 
Parameters Sub-class % Weight Rank 
Rainfall 2400 – 2900 mm 26.1 5 – Very high 

2900 – 3400 mm 4 – High 
3400 – 3900 mm 3 – Moderate 
3900 – 4300 mm 2 – Low 
4300 – 4700 mm 1 – Very low 

Soil Type HSG-A (Sandy loam) 25.4 5 – Very high 
HSG-B (Loamy) 4 – High 

HSG-C (Sandy clay loam) 3 – Moderate 
HSG-D (Silty clay, Clay, Sandy clay, silty 

clay loam, Silt, Peat) 
1 – Very low 

Slope Less than 10 15.3 1 – Very low 
10 - 20 2 – Low 
20 - 30 3 – Moderate 
30 - 40 4 – High 

More than 40 5 – Very high 
Distance from 
road 

Less than 250m 12.9 5 – Very high 
250 - 500 3 – Moderate 

500 - 1000 1 – Very low 
1000 - 2000 1 – Very low 

More than 2000 1 – Very low 
Distance from 
river 

Less than 250m 9.7 5 – Very high 
250 - 500 4 – High 
500 - 750 3 – Moderate 

750 - 1000 2 – Low 
More than 1000 1 – Very low 

Lithology - 
formation 

Limestone 10.6 5 – Very high 
Scree deposits 4 – High 

Alluvium , Sedimentary and fluvio-glacial 
deposits 

3 – Moderate 
Sandstone, siltstone 2 – Low 

Volcanic 1 – Very low 
 
 
The result of the weightage overlay analysis generates five (5) susceptibility classes ranging from very 
high with a value of 5 to very low with a value of 1. Figure 5 shows that the northeast zone of the study 
area is highly susceptible to landslide occurrence. High susceptible landslide areas were portrayed in the 
north, northeast, and northwest portions of the district because of higher rainfall and group-D soil type. 
The medium landslide susceptible zone was delineated in the central part of the study area because of the 
flat terrain. However, some pockets of southern and middle parts of the district were marked as low to 
very low vulnerable to landslide events. To validate the resulting landslide susceptibility map the legacy 
database of fifteen (15) past landslide point data was overlaid on the susceptibility map, which was 
collected from the provincial disaster office. Figure 5 shows that most of the past landslides (14 points out 
of 15) fall on the moderate to high susceptibility zones. 
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 Fig. 5 Resulted landslide susceptibility map overlaid with historical landslide points  
 Village and infrastructure were overlaid on the resulting output for a vulnerability assessment. 
Most of the infrastructures are situated within the Moderate and high susceptibility zones (Figure 
6 and Table 2). 
 

Table 2. Vulnerability assessment of six immediate infrastructure/facility 
Susceptibility 

Zone 
Aid posts Health 

Center 
Primary 
School 

Bridges Villages Village 
Court 

1–Very Low 0 0 0 0 0 0 
2-Low 3 3 6 5 39 3 
3-Moderate 6 4 12 7 121 16 
4-High 2 1 7 0 91 12 
5-Very High 0 0 0 0 0 0 
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Fig. 6 Resulted landslide susceptibility map overlaid with infrastructure facilities 

 
4. Conclusion and recommendations 
The Gembogl road and surrounding district area are prone to frequent landslides, which can 
cause significant damage to infrastructure and even result in loss of life. The population growth 
in the area has led to people settling in locations near the road for easy access to basic services, 
without proper consideration of environmental factors such as unstable slopes and vegetation 
clearance for road construction. To address this issue, a study was conducted to assess six 
physical factors and produce a landslide susceptibility map using the weighted linear 
combination (WLC) method and analytical hierarchy process (AHP). The map was validated 
using historical landslides and showed a positive correlation with moderate to high susceptibility 
zones. Landslides pose a greater risk when they affect human lives and infrastructure, while 
those occurring in remote areas with little human activity may be less dangerous. To better 
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understand the actual risk, a landslide vulnerability assessment was conducted using the location 
of villages and infrastructure facilities. 
Developing countries like Papua New Guinea should demarked landslide susceptibility zones 
over all the regions, where people are living in high altitude or mountainous areas. This type of 
study will help local authorities to better plan where there should be developments and where 
people should settle. In addition, landslide susceptibility will help the district development 
authority in their development plans and the disaster office in their disaster mitigation and 
prevention acts. There should be research on landslide susceptibility mapping almost in all 
regions of this country. Moreover, proper measures to avoid or control this matter should be in 
place to save damage costs and lives in the future.  For future research, more parameters could be 
incorporated into the WLC-AHP method for better results. 
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